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Summary 

Identification of the part of seasonal climate variability that is predictable from SST is 

discussed, for benefits in forecasting and in establishing attribution for observed climate 

states. 



Abstract 

The Seasonal Diagnostics Consortium of the Applied Research Centers is engaging in a 
real-time activity to detect and understand the role of sea surface temperature (SST) 
anomalies in observed climate anomalies. The activity is aimed to improve practices in 
seasonal climate forecasting by fully harvesting the accumulated research evidence of the 
climate’s sensitivity to ocean forcing. The approach, in the first phase of the activity, 
involves performing ensembles of atmospheric general circulation models (AGCMs) at 
several institutions, using the most recently observed global SST anomalies as prescribed 
forcings. The runs are routinely updated each month as the latest SST observations 
become available, adding to the archive of historical simulations spanning the last half-
century.  
The SST-forced signal in the seasonal mean climate is detected through the agreement 
among ensemble mean anomalies drawn from the simulations of the various AGCMs. 
The Consortium activity also compares the dynamically forced signals with those 
estimated empirically, based on the observational archive. A comparison of the 
coordinated simulations with the observed climate anomalies is then made for two 
principle reasons: (1) to offer an attribution for the ocean’s role in the origin of the 
observed seasonal climate anomalies, and (2) to determine the causes for success or 
failure of operational seasonal climate predictions, whose tools may be either mainly 
dynamically or empirically derived. It is expected that routine climate diagnostics and 
attribution efforts for climate anomalies will help further develop the knowledge base for 
improving the practice of seasonal climate predictions, and advance understanding of 
global climate on seasonal to decadal time-scales. 
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1. Motivation 
Operational seasonal climate prediction is an emerging practice with far reaching societal 
applications. An ability to anticipate climate fluctuations one or more seasons in advance 
would have measurable benefits for decision-making in hydrology, agriculture, health, 
energy, and other sectors of society. It would allow for proactive reservoir management 
(Cunha 2003), crop planting adjustments (Dilley 1997; Hammer et al. 2001), vector 
control for epidemic disease prevention (Thomson et al. 2000), fuel storage, and other 
mitigative measures. It also influences other risk management activities implicit in the 
weather derivatives and reinsurance industries (Murnane et al. 2002; Murnane 2004). 
Until the most recent decades, climate prediction had been viewed as a speculative and 
largely unproven venture. In the 1980s, the U.S. National Weather Service’s seasonal 
outlooks were developed using mainly lag correlations of observed upper atmospheric 
pressure anomalies (Wagner 1989) and analogues (Livezey and Barnston 1988), with 
some consideration of newly discovered teleconnections from tropical Pacific sea surface 
temperatures (SSTs)(Horel and Wallace 1981). More recently, and largely as a result of 
better quantification of the climate effects of the El Niño/Southern Oscillation (ENSO) 
phenomenon, seasonal forecasts of 3-month average surface temperature or precipitation 
have been clearly demonstrated to have skill in particular seasons, regions and 
circumstances (Livezey 1990; Kumar et al. 1996; Shukla et al. 2000; Graham et al. 2000). 
Nonetheless, users often remain cautious and reluctant to make use of officially issued 
climate forecasts in their decision-making process. Underlying this hesitancy is the 
complication of accommodating the inherent probabilistic nature of climate forecasts. As 
such, the value of the forecasts becomes clear only through their consistent application 
over a set of cases rather than in any single case.  A related issue is the fact that it is not 
always clear why seasonal predictions succeed in some instances but fail in others. 
In the emerging practice of seasonal climate prediction, the following questions can be 
posed: Are the failures of individual seasonal predictions largely reflections of an 
inherent natural limit of seasonal climate predictability? How much do inaccuracies and 
biases in seasonal prediction methodologies contribute to errors in seasonal climate 
predictions? Is there an optimal way to practice seasonal climate prediction? 
In this paper, we focus on some issues related to the practice of making seasonal climate 
predictions.  Starting from a discussion of why climate predictability exists, we propose 
what the best practice for seasonal climate prediction may be. The best practice is viewed 
as a procedure that would lead to the most accurate seasonal climate predictions, resulting 
in highest possible skill when evaluated over an extended validation period1.  We then 
describe a Consortium activity aimed at realizing some aspects of making the best 
possible predictions.  Other practical applications for the Consortium activity are also 
discussed. 
 
2. Climate Predictability and Climate Predictions 
Seasonal climate predictability has its scientific basis in the fact that slow variations in 
the earth’s boundary conditions, e.g., SST, snow cover, soil wetness or vegetation, can 

                                                 
1 We apply the term accuracy to forecast quality for an individual case (e.g. a single location for one time), 
and the term skill for quality over a collection of cases (either many locations for a single time, many times 
for a single location, or, more typically, for many cases over both time and space). 
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influence global atmospheric circulation and thus global surface climate2.  If future 
evolution in the boundary conditions can be anticipated, then from the knowledge of their 
influences on global atmospheric circulation, skillful seasonal predictions for atmospheric 
climate anomalies are possible. A key requirement in making successful seasonal climate 
forecasts, therefore, is documenting and understanding atmospheric responses to a broad 
range of anomalous boundary forcings. Because SST forcing is principle among the 
boundary conditions influencing atmospheric seasonal variability, we focus mainly on it 
in this paper. 
It can be shown that the most accurate prediction of seasonal mean climate, i.e., a 
seasonal climate prediction that on average would have the highest skill, is the 
atmospheric response associated with the attending anomalous boundary forcing. To the 
extent that there is a “forcing-to-response” relationship between the boundary conditions 
and the atmosphere, the predictable signal can be estimated from dynamical experiments 
in which the boundary conditions are specified. Indeed, this is the presumption of the so-
called two-tiered practice of climate forecasting that has been in wide use (Bengtsson et 
al. 1993). In this initial phase of the Consortium activities, the focus is on the sensitivity 
of such atmospheric models to specified SST boundary conditions; subsequent efforts 
will address the suitability of the two-tiered design itself. 
In theory, over increasingly large numbers of cases of the same anomalous boundary 
forcing, the statistical distribution of the atmospheric anomalies would converge to that 
which is most likely for that forcing. In the absence of large samples of repeated 
observations of any specific SST anomaly pattern, this distribution is estimated from 
large ensembles of AGCM integrations for the same SST anomaly pattern but for 
differing atmospheric initial conditions—the latter giving rise to variability in the climate 
simulations across ensemble members. The summary information obtained from the 
statistical distribution (hereafter called the probability density function, or PDF) would 
then be considered the most accurate and hence the best forecast. For example, the mean 
anomaly across the ensemble members can be considered as a possible deterministic 
prediction, and the uncertainty of this prediction would be reflected in the spread 
(dispersion) of the PDF about the mean anomaly.  
Deterministic predictions of seasonal mean climate based on the mean anomaly, 
however, are not always accurate for individual cases, even for a perfect AGCM and 
perfectly represented boundary conditions. This is the case because a single observed 
seasonal climate anomaly convolves the boundary forced signal with the noise—the 
atmosphere’s internal variability that is not boundary forced, and hence largely 
unpredictable on a seasonal time-scale3. This variability consists of individual weather 
events over the course of the season whose timing, intensities, and trajectories are not 
predictable beyond about two weeks into the future. Included in these weather events are 
certain longer-lived atmospheric anomalies such as high latitude blocking patterns and 
                                                 
2 Seasonal forecast skill can also be derived to a lesser extent from within the atmosphere, from phenomena 
having long lifetimes such as the Madden-Julian Oscillation (MJO; Madden and Julian 1971) or the 
stratospheric Quasi-biennial Oscillation (QBO; Baldwin et al. 2003). Here, however, we limit our attention 
to external boundary conditions. 
3 Within the paradigm of deterministic prediction, signal refers to the location of the mean of the PDF (and 
its deviation from the climatological mean), whereas noise is represented by the PDF’s spread. For 
probabilistic predictions, signal is represented as the entire PDF itself (and its difference from the 
climatological PDF), and noise as the uncertainty of the prediction (i.e. the forecast probabilities). 
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stationary troughs. Consequently, even the best possible seasonal predictions have 
notable uncertainty. It is for this reason that seasonal climate predictions are cast in 
probabilistic terms, to reliably reflect the uncertainty related to intrinsic “weather noise”. 
Our current knowledge about the relationships between boundary conditions and climate 
is incomplete, consisting primarily of associations related to ENSO and a few other, 
mainly more localized, tropical phenomena. Essential for improving seasonal climate 
predictions is obtaining a wider knowledge of associations between boundary conditions 
and the statistical distribution (PDF) of the atmospheric climate states, together with a 
better understanding of the predictability of those boundary conditions. 
Within the paradigm that the predictable part of climate variability emerges from 
boundary forcing, and acknowledging that the best possible seasonal climate prediction is 
the PDF of atmospheric states consistent with that forcing (in the “forcing-to-response” 
paradigm mentioned above), one pathway for improving the practice of climate 
predictions is to: (1) obtain a best prediction for the future boundary condition anomalies, 
and (2) specify the true PDF corresponding to this boundary condition prediction as the 
seasonal prediction having maximum possible skill.  Such an approach minimizes error in 
the estimate of the expected atmospheric state caused by the imposed forcing.  Returning 
to our example of the mean anomaly as a deterministic prediction, the mean anomaly has 
the maximum likelihood of occurrence (assuming the true PDF is not highly irregular), 
and is therefore the best possible prediction. It is stressed that this “best” prediction may 
not be accurate with respect to the observed result in individual cases, or even skillful on 
average over many such cases, since the signal may be disturbed by the climate noise 
whose amplitude is represented by the spread of the PDF. 
Such a 2-tiered prediction system is already in use at many operational centers. One may 
argue that the 2-tier approach is a transitory phase that is necessitated by biases in the 
current generation of coupled ocean-atmosphere prediction systems. With future 
improvements in dynamical models, seasonal climate predictions may eventually be done 
using  a one-tier system, in which the boundary conditions and the atmospheric responses 
evolve together. Such an evolution notwithstanding, understanding seasonal atmospheric 
climate variability, and its connection to the earth’s slowly evolving boundary conditions, 
could still rely on the 2-tier approach where boundary conditions can be considered an 
external forcing. 
 
3. Two Approaches to Inferring Atmospheric Responses to Boundary Forcings4 
The atmospheric responses to the slowly changing boundary conditions can be inferred 
using either of two broad approaches. An empirical approach involves analysis of 
historically observed boundary conditions and the accompanying global circulation and 
surface climate. That is, using observations, patterns of correspondence between SST 
anomalies and the climate can be identified. This approach is illustrated in studies such as 
Barnett (1981), Ward and Folland (1991), Barnston and Smith (1996), Yang et al. (1996), 
Ward (1998), Landman and Mason (1999), and Mason and Goddard (2001), to name only 
a few. While often identifying an approximately correct atmospheric signal forced by the 
ENSO-related SST anomaly pattern and to a lesser extent by one or two more localized 
tropical SST patterns (Hastenrath, 1995; Anderson et al. 1999), the period of globally 
                                                 
4A review of the history of the development and current state of climate prediction science is provided in 
Goddard et al. (2001). 
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adequate observational analyses is not long enough to resolve differences in the 
relationships between different “flavors” of ENSO SST forcing and climate, or between 
presently unrecognized non-ENSO-related SST forcings and climate. This is the case 
because inadequate samples of such SST variations exist upon which stable empirically-
derived climate models can be built (see also Nicholls 1984).  
It is this latter gap in particular that can be filled by a second, and complementary, 
approach to defining the climate signals forced by boundary conditions using dynamical 
approaches. A multitude of atmospheric general circulation model (AGCM) simulations 
forced by the historical SSTs can be produced to yield a large sample of climate states for 
each any every boundary state in the record. Permitted thereby is a statistically robust 
estimate of the climate sensitivity to the various, known SST conditions. In addition to 
detecting the mean climate signal due to the influence of the boundary condition, the 
unpredictable portion of the atmosphere’s behavior for that forcing is also estimated by 
running the AGCM repeatedly using the same boundary conditions but differing 
atmospheric initial conditions, thereby yielding the PDF of climate states consistent with 
the forcing. For the typical 15-day lead times of seasonal climate predictions, details of 
the initial atmospheric conditions are not important because the forecast is, on average, 
beyond the range of deterministic predictability. The result is an ensemble of simulations 
whose mean is representative of the signal coming from the boundary conditions and 
whose variations (which are often substantial) express the uncertainty related to the 
different possible sets of unpredictable weather events. The larger the ensemble of 
AGCM runs, the smaller the role of sampling error and the more representative the 
resulting PDF is expected to be, aside from biases of the AGCM. Relationships among 
boundary condition signal strength, AGCM ensemble size and atmospheric climate 
simulation skill are discussed in Kumar et al. (2001a), Kumar and Hoerling (2000), and 
Wehner (2000), among others. 
The AGCM simulations are computer intensive, which partly explains why the dynamical 
approach emerged most rapidly during the most recent decade. Yet, this approach to 
determining SST-atmosphere relationships circumvents problems associated with the 
limitations of observed data, and makes possible simulations of atmospheric responses to 
boundary forcings that have hitherto been unsampled in the instrumental record—an 
attribute that is particularly germane within a non-stationary climate.  
It remains an open question to what extent dynamical methods may improve upon the 
information gleaned from empirical methods alone for purposes of climate attribution and 
prediction. The answer depends largely on the sensitivity of the atmosphere to changes in 
boundary forcings. If there is mainly just a single preferred atmospheric pattern, the one 
that is forced by ENSO-related tropical SSTs, then empirical approaches have adequate 
historical archives upon which to define that mode of variability. The question is whether 
inter-ENSO variations of tropical SST anomalies matter to the atmosphere, and 
furthermore whether there exist significant response patterns to non-ENSO sources of 
SST variations—including ones that might be unprecedented in the observed archive. 
Notwithstanding debates on the merits of empirical vs. dynamical methods in inferring 
atmospheric responses to boundary forcings, there is little doubt that a synergistic use of 
both empirical and dynamical approaches would be useful in the advancement of our 
understanding of seasonal climate variability.  

 6



The complexity of the atmospheric processes and of the sequence of physical events 
leading from SST forcings to atmospheric responses makes individual AGCMs prone to 
specific biases and raises well justified questions about any conclusions based on 
individual AGCMs. This situation leads to potential problems in determining the true 
atmospheric signal associated with a boundary forcing based on any single model. The 
observations pose a no less difficult problem, namely whether a single realization of 
nature can be relied upon to accurately reflect that signal.  
Keeping the influence of AGCM biases in mind, the modeling challenge is illustrated in a 
comparison of the observed and a single-model ensemble mean simulated 200-hPa height 
anomalies during December through February (DJF) 2001-2002 (Fig. 1). We focus on the 
AGCM’s mean anomaly because it represents the most basic characteristic—the first 
moment—of the PDF across the AGCM’s ensemble members. What can be inferred from 
the agreement between observations and simulations for this single case, and what is the 
implication for attribution efforts to discern the role of SST boundary forcing?  
Comparison with the observed height anomalies (Fig. 1, bottom) reveals a roughly out of 
phase relationship over North America. Does this imply a poor performance by the 
AGCM that could be due to biases?  On the contrary, from this comparison between the 
atmospheric signal and the observed seasonal mean anomaly one cannot reach any 
definitive conclusion, as the observed anomaly may have been influenced by atmospheric 
internal variability, while still being consistent with the PDF of seasonal mean 
atmospheric states associated with the SST forcing. Consistency with the SST-forced 
PDF means that the observed result is within the range of possibilities implied by the 
PDF, including occasionally residing on a tail of the PDF. 
The same uncertainty would exist if the AGCM ensemble mean had closely resembled 
the observations for a single case, insofar as agreement may have been coincidental given 
that internal atmospheric variability can not only mask the boundary forced signal, but 
also constructively interfere with that signal. It is by comparing a large sample of cases of 
observed and simulated climate anomaly patterns for winter in North America that the 
suitability of a particular model can be assessed (Kumar et al. 1996). On the other hand, a 
principal purpose of the Seasonal Diagnostics Consortium is to detect the boundary 
forced atmospheric signals on an individual case basis, as for example DJF 2001-2002. A 
step toward significantly reducing the uncertainty surrounding AGCM behavior for 
individual cases is proposed in the next section.  
 
4. The Seasonal Diagnostics Consortium 
An enterprise that is beyond the resources of any single institute is to perform real-time 
climate simulations using numerous, different AGCMs—and this leads to a key 
diagnostic tool of the Consortium for detection and attribution efforts. The premise of this 
activity is that detection of the boundary forced signal on an individual case basis is 
feasible in the context of a multi-AGCM approach, as this would reduce the effect of 
AGCM-specific biases. There is reason to suspect that the different models have differing 
biases regarding their SST forced sensitivity, as suggested by the improvement in 
dynamical forecast skill when using multi-model (Rajagopalan et al. 2002) and “super-
ensemble” (Krishnamurti et al. 1999) approaches.  It is nonetheless also recognized that 
despite the fact that several AGCMs used in the Consortium were developed 
independently at different institutions, they have some common biases in their mean 
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climates, and these may lead to common biases in their sensitivities. Those 
notwithstanding, a dynamical approach based on use of several AGCMs is necessary to 
advance detection of boundary forced seasonal climate signals, and to provide 
meaningful attribution for the origin of observed seasonal anomalies. The degree of 
agreement in the atmospheric responses among AGCMs serves as a first-order indicator 
of the prominence of the boundary-forced signal, as compared with the internally 
generated atmospheric variability. 
Presently, the Consortium ensures that several AGCMs are run in near-real time using the 
most recently observed global SSTs and sea ice (Reynolds and Smith 1994) as prescribed 
boundary states. This suite of AGCM runs is continually updated monthly, and appended 
to a historical archive of such simulations spanning, for most models, the post-1950 era. 
The boundary states of soil moisture and snow cover are not specified according to 
observations, though these are fully interactive in the AGCMs.  Trace gases, including 
ozone, methane and carbon dioxide, are set to modern climatological values. The activity 
produces simulations designed in the same way as those already archived from the AMIP 
experiments (Gates et al. 1999). Distinguishing the Consortium’s simulations is that they 
are produced and examined as soon as is physically possible, are compared with 
corresponding results using SSTs predicted 3.5 months earlier, and in some cases are 
associated with an ongoing climate state that may affect a seasonal forecast task presently 
at hand. Adding to the real-time context is that some of the AGCMs used in the 
Consortium are used routinely at the operational forecast centers (e.g. NOAA/CPC and 
IRI), whose recent errors and long-term biases are of importance to forecasters in 
consolidating the indications of the AGCMS and other tools. 
The institutions participating in this ARCs Consortium determine the set of AGCMs used 
in the Consortium activity. However, at present not all institutions provide their model 
simulations, due to practical considerations. The list of institutions is shown in the 
sidebar. Some basic features of the participating AGCMs are given in Table 1.  
To illustrate the diagnostic activity of the Consortium, we consider surface temperature 
over North America during the recent El Niño of DJF 2002-03. The moderate intensity of 
that event (Fig. 2) led to expectations for a canonical winter climate resembling the 
previously documented teleconnection pattern during El Niños (Opsteegh and van den 
Dool 1980; Hoskins and Karoly 1981; Horel and Wallace 1981; Halpert and Ropelewski 
1992; Barnston 1994; Graham et al. 1994; Graham and Barnett 1995; Hoerling et al. 
1997; Higgins et al. 2000). 
Figure 3 shows the global surface temperature simulations of five AGCMs as forced by 
their observed global SST and sea ice analyses for DJF 2002-03. As an assessment of the 
boundary forced signal for this case, we diagnose the occurrences of unanimous sign 
agreement among the ensemble mean anomalies of all five AGCM simulations. The 
regions of unanimous agreement are indicated by color-shading in Fig. 4. Within the 
regions of agreement there is fairly high confidence of having detected the sign of the 
boundary forced signal, whereas outside of that region the confidence of detection is 
judged to be inadequate. Over North America, all five AGCMs simulated above normal 
surface temperature in the western U.S. and southwestern Canada, and below normal 
temperature along the east U.S. coast from the Gulf of Mexico northeastward to 
southeastern Canada (Fig. 4). There is also unanimous agreement that the specified SSTs 
yielded positive temperature anomalies over nearly all tropical landmasses.  

 8



In the analysis above, the mean of the ensemble simulations is interpreted as providing 
the most likely boundary-forced climate signal for each AGCM.  Such analysis focuses 
only on the polarity of the signal, with no regard to amplitude, and unanimity of sign 
across all AGCMs is required to claim detection of the atmospheric signal.5 The 
probability that five AGCMs having independently designed dynamical cores and 
parameterization schemes will produce the same atmospheric anomaly sign in the 
absence of any signal is only 2/25, or 0.06. (This is the same binomial probability as that 
of flipping a fair coin five times and getting the same outcome each time: 2-5 for all 
heads, plus 2-5 for all tails.) The actual probability is higher than 0.06 to the extent that 
model biases are shared across the models. Nevertheless, agreement among a set of 
models, each contributing as large an ensemble of runs as possible to its ensemble mean, 
is one viable approach to detection of the boundary forced signal on an individual case 
basis. 
The approach of the Consortium activity to infer atmospheric signals for SST forcings 
circumvents the problems of inferring similar relationships using a single AGCM.  
Agreement in the atmospheric responses among different AGCMs forced with common 
SSTs enhances our confidence in the "fidelity" of atmospheric responses, even if such 
responses, for unprecedented SST forcings, cannot be verified from the limited 
observational data.  On the other hand, a first order “sanity check” on the AGCM-
simulated atmospheric response to the ENSO SSTs can always be made by comparing it 
with the observed ENSO composites that are fairly well defined and understood.  
 
5. Broader Applications of Seasonal Diagnostics Consortium Activity 
The central goal of the Consortium activity is to increase knowledge of the atmospheric 
impacts of SST boundary conditions, including relatively subtle impacts that at present 
cannot be gleaned from the observed data alone.  In recent decades enormous focus has 
been placed on understanding the effects from the tropical Pacific ENSO canonical mode 
boundary forcings (e.g., see a review by Trenberth et al. 1998). However, forcing related 
to variations in ENSO’s “flavor”, from the Indian Ocean in the absence of an ENSO 
signal, from the tropical Atlantic, or from the western Pacific warm pool, is less well 
understood. These effects need better documentation not only through isolated ocean 
forcing experiments (e.g. Goddard and Graham 1999; Barsugli and Sardeshmukh 2002) 
but also for actual SST forcings for all tropical oceans—a focus of the Consortium 
activity.  
Apart from the straightforward task of documenting atmospheric responses to a wide 
range of SST forcings, the Consortium activity and its datasets also have other 
applications as discussed below. 
 
a. Climate Attribution 
Current research on seasonal climate variability can be viewed as having two distinct 
aspects: monitoring and prediction. Monitoring involves documenting global seasonal 
observed climate anomalies, without necessarily seeking to understand their causes. 

                                                 
5 Ideally, the multi-model signal would be defined probabilistically by the number of ensemble members 
falling into specified ranges. In the absence of refined model recalibrations and the large ensemble sizes 
needed to make such probability assignments meaningful, here we consider only the ensemble mean (which 
has a lower ensemble size requirement) and cases of unanimous sign agreement, as a first step. 
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While seasonal prediction activities involve evaluations of the robustness of the skill of 
the predictions, they often do so without seeking reasons for why predictions are accurate 
in some cases and inaccurate in others. The Consortium activity can add to both aspects 
by examining the causality of observed seasonal climate anomalies. 
As discussed in section 4, an outcome of the Consortium activity will be to better 
understand atmospheric signals consistent with global SST forcings.  This exercise could 
be done independently of the observed atmospheric anomalies.  However, if the 
atmospheric signals inferred from the AGCM simulations are also compared with the 
observed atmospheric anomalies, the Consortium activity can examine the causality of 
observed seasonal climate.  In other words, the same set of AGCM runs can be used to 
explore attribution (identification of causality) and predictability (robustness of 
relationship between external forcing and climate) for the observed anomalies. 
As an example, in the top panel of Fig. 5 we show the observed surface temperature 
anomalies for DJF 2002-03.  A comparison between the observed anomalies and the 
model simulations (Fig. 3) indicates that there is good agreement between the two over 
North America—in particular the negative temperature anomalies along the immediate 
east coast of the U.S. and positive anomalies in portions of western North America. The 
mutual agreement in the atmospheric signal among five AGCMs and the observations 
gives some confidence that the observed anomalies are related to the global SSTs.  
Shown in the bottom panel of Fig. 5 is an agreement plot similar to that of Fig. 4, but also 
incorporating the observations with the model-simulated signals.  Here it is seen that a 
few regions of agreement among the AGCMs are lost when the observations are 
included, as for example a portion of northeastern India and northeastern China.  
However, over the geographical regions where the atmospheric signal among the models 
agrees with the observed anomalies, the sign of observed anomalies are found to be 
consistent with all of the AGCM responses, and one may be tempted to attribute the 
observation to the SST-forced signal. However, the question remains open as to whether 
the latter agreement could be coincidental. 
In seeking an attribution for the observed anomalies, it becomes important to examine 
their location within the PDF formed by all simulated anomalies associated with the 
boundary forcing, rather than just the PDF’s mean value. It is necessary therefore to 
express the attribution of individual observed seasonal mean anomalies in probabilistic 
terms. Under the current Consortium activity there is an ensemble of approximately 80 
simulations for each season.  Similar to the agreement plot in Fig. 4, maps showing the 
spatial distribution of probability for AGCM simulated anomalies to be above or below 
given thresholds can be analyzed. This probability would be approximated as the number 
of ensemble members in the given interval divided by the total number of ensembles. It is 
emphasized that in doing a probabilistic evaluation using the full PDF of simulations, a 
large (order ~100) ensemble size is required (Sardeshmukh et al. 2000), and correction of 
systematic errors on an AGCM-specific basis is desirable. 
 
b. Postmortem of Routine Operational Climate Predictions 
When coordinated across many models and executed in real time, AGCM simulations 
can improve the forecast process by clarifying the possible causes for the success or 
failure of operational seasonal climate predictions. 
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Consider a forecast for the Northern Hemisphere winter season of DJF, made at a  one-
half month lead time. Atmospheric and oceanic observations for October would become 
available during the first 10 days of November, enabling SST predictions for the coming 
several months to be made. Using these SST predictions for DJF, dynamical (or 
empirical)  predictions of the atmosphere for this season would be made in mid-
November. In early March, observations of both the SST and the climate for DJF would 
become available. As a part of Consortium activity, the ensembles of AGCM simulations 
are then run using the observed SSTs. Thus, three sets of climate data are present for the 
finished season: (1) atmospheric predictions by AGCMs using predicted SSTs, (2) 
simulations by AGCMs using observed SSTs, and (3) observations. 
 
Three possible reasons for a particular forecast’s inaccuracy may be identified:  
 
• The SST predictions have errors that can lead to errors in the subsequent 
atmospheric forecasts.  
• The prediction models have errors in their atmospheric responses, such that even 
when the SSTs are predicted correctly, their seasonal predictions have errors.  In the case 
of AGCMs, these would be due to model biases, and may also include the possibility that 
the 2-tiered design itself is flawed as a prediction practice.  In the case of empirical 
models, these would be due to sampling limitations of the observed data used to train the 
model, as well as lack of satisfaction of the empirical models’ assumptions (e.g. linearity, 
normality). 
• The observed climate anomalies may have little or no signal associated with the 
SSTs (or other boundary-forcings), despite well predicted SSTs and AGCMs having 
realistic atmospheric responses to the SSTs. This would imply a large random, 
unpredictable component in the observed seasonal mean climate state, and would indicate 
a large uncertainty in forecasts. 
 
It would not be possible to identify which factors among the three listed above was 
responsible for the accuracy of predictions if only the predictions and verifications were 
available; it is important also to generate the simulations based on the true, observed 
boundary forcings.  It is also important to provide such assessments in a timely manner so 
that the next seasonal forecast cycle can benefit from the thorough evaluation, not only of 
the causes for prior forecast success or failure, but also the role that the most recent ocean 
states have played in controlling the trajectory of seasonal climate.6 
In the approach used in the Seasonal Diagnostics Consortium, the first reason listed 
above is examined by forcing the AGCMs with observed SSTs to assess the contribution 
to the error caused by the imperfectly predicted SSTs. (It should be noted that empirical 
methods can also be used in this attribution effort, though with the various caveats 
regarding the limitations of that approach in cases of weak, or historically unsampled 
forcings.)  If that reason can be eliminated, we then find where there is anomaly sign 
unanimity among the climate simulations of the AGCMs. Where there is unanimity, the 
second reason is substantially reduced because inferences about the atmospheric signals 
are made using several AGCMs, effectively filtering many of the individual model 
                                                 
6 However, extrapolation of aspects of the most recent season’s outcome to a forecast for the coming season 
requires a careful consideration of the seasonal dependence of the SST-forced climate signal. 
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biases.  By eliminating these two factors, it is possible to diagnose some poor predictions 
as being likely due to the observations containing a large influence from internal 
variability. Drawing this conclusion requires believing that the probability that the 
AGCMs suffer from common biases is minimal—i.e. that their biases are largely 
independent. The less realistic this belief, the larger the required number of individual 
AGCMs to attain any given probability that unanimous sign agreement occurs by chance. 
 
c.  Improving Climate Predictions 
Recent evidence suggests that consolidated output from several of today’s most recently 
developed AGCMs forced by observed SSTs provides valuable simulation guidance that 
may not be possible using empirical methods. Three examples of this are (1) prolonged 
high temperatures over North America following the 1997-98 El Niño (Kumar et al. 
2001b), (2) mid-latitude drought in association with positive SST anomalies in the 
western Pacific in 1998-2002 (Hoerling and Kumar 2003), and (3) influence of Indian 
Ocean SST anomalies over the Pacific North American sector during the 1997-1998 El 
Niño (Farrara et al. 2000), although here only a single AGCM was used. Identifying the 
sources of these climate effects using empirical methods would be more difficult due to a 
combination of two factors: First, historical data needed to train empirical models are 
scant over parts of the affected regions—e.g. southwestern Asia. The second factor is that 
two of these occurrences (post-1997-98 El Niño warmth and 3-year southwestern Asia 
drought) are unprecedented in the most recent several decades of historical data.  
The above examples suggest that a routine climate attribution effort using AGCMs will 
build up our knowledge base of relationships between SST forcings and their atmospheric 
responses and complement efforts based on empirical analysis alone. By doing so, it may 
lead to improvements in the seasonal predictions at later times when SST anomalies 
similar to those documented recur. 
However, prescribed observed SSTs are required in obtaining the above dynamical 
diagnostic results—SSTs that are not perfectly known in advance for real-time 
forecasting.  The impact of imperfectly predicted SST on climate prediction skill can be 
estimated from the skills of AGCMs forced with predicted versus observed SST (e.g. 
Goddard and Mason 2002).  This should help forecasters be aware of the possible range 
of influences of errors in the predicted SST fields on the seasonal forecasts. 
 
d.  Nowcasting Climate Change and Implications for Seasonal Predictions 
A prediction tool used as input to climate forecasts for the U.S. at the NOAA CPC, called 
optimum climate normals (OCN; Huang et al. 1996), computes the average atmospheric 
anomaly over the most recent 10 (15) years for surface temperature (precipitation) for the 
season in question, with the anomaly defined in terms of the current 30-year 
climatological base period.  This anomaly is specified as a prediction for the subsequent 
season, and can be broadly interpreted as a forward extrapolation of recent climate trends.  
It is noteworthy that the historical skill of hindcasts of OCN is similar to that of any of 
NOAA’s other prediction tools, including their statistical and dynamical models that 
focus on the effects of forcings having shorter interannual time scales.  However, it is not 
clear what proportion of the skill of OCN is an artifact of statistical sampling (Wunsch 
1999) vs. being physically based, e.g. as influenced by gradual changes in SSTs. 
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Recent studies have shown that some climate anomalies may be related to decadal 
variability or trends in SST anomaly.  A warmer Indian Ocean (Lau and Weng 1999; 
Giannini et al. 2003), an expanded warm pool in the tropical Pacific (Barlow et al. 2002), 
and other warmed portions of the world’s oceans are likely causes for certain recent 
climate trends (Hoerling et al 2001). The example of recent multi-year drought in part of 
southwestern Asia and North America discussed in Hoerling and Kumar (2003), related 
to a positive SST anomaly pattern in the western tropical Pacific more commonly 
observed in recent years, implies a greater likelihood for future drought in these regions 
than the observed relative frequency in the past.  If physical connections in the low-
frequency trends in the boundary conditions and atmospheric climate anomalies exist, the 
Seasonal Diagnostics Consortium activity can "nowcast" the evolution of the longer-term 
climate system by recognizing and understanding such associations. This low frequency 
climate behavior may be related to interdecadal variations in the boundary conditions, or 
may involve changes in anthropogenic forcings such as greenhouse gas concentrations 
(Timmerman et al. 1999; IPCC 2001), or both.  In any case, a coordinated set of AGCM 
simulations can provide a “nowcast” of an atmospheric response to aspects of SST 
identified as being low-frequency. 
 
e.  Evaluation of Model Updates for Seasonal Predictions 
An aspect of seasonal prediction of key importance is the signal-to-noise (S/N) ratio, 
which represents the relative proportion of the climate variability that is potentially 
predictable for a given location and time of year, given perfect knowledge of the external 
forcings. The predictable portion (the signal) is dependent on SST or other boundary 
condition, external to the atmosphere. The remainder of the climate variability is related 
to fluctuations internal to the atmosphere (the noise), which is generally unpredictable 
beyond the first two weeks except in those cases in which the internal variability may 
depend to some extent on the signal (Renwick and Wallace 1996; Sardeshmukh et al. 
2000; Compo et al. 2001; Schubert et al. 2001)7 or to some degree from long-lived intra-
atmospheric phenomena (e.g. MJO, stratospheric QBO). In locations and seasons having 
negligible contribution from boundary condition forcing, predictability is lacking and 
climate variations are related mainly to noise. As dynamical models are continually 
updated, assessments of their seasonal predictability are an important aspect of their 
evaluation process.  The reliance of the coordinated Consortium activity on the output of 
AGCMs makes possible evaluations of individual AGCMs—whether for S/N, base 
period correlations with observations, deviation from the majority response of the AGCM 
set, or other attributes. 
 
6. Conclusion: Future Vision 
It is envisioned that in the future, climate prediction will have greater input from  
dynamical methods either based on a one-tier or two-tier approach. One can also envision 
intermediate (“1.5-tier”) approaches in which SSTs are specified over a portion of the 
oceans, such as the ENSO domain, but a coupled (1-tier) model is employed over the 
remainder of the world oceans. Implementation of dynamical approaches, however, 
requires confirmation that such tools deliver skill and probabilistic reliability similar to or 
                                                 
7 It has been shown, however, that a large majority of the impact of boundary forcing is on the mean of the 
atmospheric response, with a more subtle impact on the dispersion about the mean (Kumar et al. 2000). 
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greater than that of empirical approaches—either in general or under specific conditions 
that are identifiable at the time of the prediction. It is hoped that the Seasonal Diagnostics 
Consortium activities will lead to greater acceptance in the use of dynamical methods to 
better understand and predict climate variations on seasonal to decadal time-scales. 
In the first stage of the Consortium activity, the coordinated set of AGCM simulations 
only includes the forcing of AGCMs using global observed SST.  In the future, it is 
planned to perform “targeted” experiments that would include a set of simulations forced 
using SST anomalies restricted to single ocean basins.  The results may enhance the 
attribution aspect of the Consortium activity, and help increase our understanding of the 
relative importance of SST, and its prediction, in different ocean basins.  More detailed 
analyses of the typical limitations imposed by using predicted SST in real-time forecasts 
would naturally follow. Finally, the set of AGCM simulations can be extended to include 
evolution of anthropogenic forcings to help climate nowcasting efforts, thereby further 
improving seasonal climate predictions. 
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Institutions participating in the ARCs Seasonal Diagnostics Consortium (sidebar; goes 
with bottom of page13 or top of page 14). 
 
The participating institutions are the NOAA Climate Diagnostics Center (CDC; Boulder, 
Colorado), the NASA Seasonal-to Interannual Prediction Project (NSIPP8; Greenbelt, 
Maryland), the International Research Institute for Climate Prediction (IRI; Palisades, 
New York), the National Centers for Environmental Prediction (NCEP; Camp Springs, 
Maryland), the Center for Ocean-Land-Atmosphere Studies (COLA; Calverton, 
Maryland), the National Center for Atmospheric Research (NCAR; Boulder, Colorado), 
Scripps Institution of Oceanography (SIO; La Jolla, California), and the Geophysical 
Fluid Dynamics Laboratory (GFDL; Princeton, New Jersey). 

 

                                                 
8 The NSIPP organizational name was changed to GMAO during 2003. 
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Table 1. Some basic characteristics of the AGCMs used in the discussion. Model Type 
refers to whether quantities are stored and expressed on the basis of spectral wave 
numbers or by fixed grid point locations. Resolution refers to the spatial scale of the 
smallest details able to be captured by the model. For spectral models, T stands for 
“triangular” truncation, and the following number refers to the fineness of horizontal 
resolution. (T42, for example, implies 2.81 degrees latitude and longitude resolution). For 
grid point models, resolution indicates how far adjacent grid points are apart from one 
another. L refers to vertical resolution—specifically, the number of vertical levels in the 
model. The number of simulations refers to the ensemble size. 
 
 
   Model 
 

CCM3 NCEP/SFM NSIPP ECHAM4.5 GFDL 

Model Type Spectral Spectral Grid Point Spectral Grid Point 
Horizontal 
Resolution 

T40 T42 2 degr T40 2 degr lat, 
2.5 degr lon 

Vertical 
Resolution 

L18 L18 L34 L18 L18 

Highest level 2.9 mb 2 mb 2.5 mb 10 mb 3 mb 
Number of 
Simulations 

20 18 9 24 10 
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Figure Captions 
 
1. Top: Ensemble mean simulation of 200 hPa height anomaly for DJF 2001-02 using a 
single AGCM forced by the observed global SST for the 3-month period.   Bottom: 
Observed 200 hPa height anomalies for DJF 2001-02. Contours are drawn at zero, 60 and 
–60 m; dashed lines denote negative anomalies. Orange (blue) shading denotes positive 
(negative) anomalies. Shading changes occur at magnitudes of 15, 30, 45, 80 and 120 m. 
 
2. Observed 3-month mean SST anomaly for DJF 2002-03. Contours are drawn for 
anomaly magnitudes of 1 and 2°C. Shading changes occur at magnitudes of 0.25, 0.5, 
1.0, 1.5, and 2°C. 
 
3. Plots of surface temperature anomaly as simulated by five AGCMs for DJF 2002-03, 
all forced by prescribed observed SSTs for those three months. Red shading denotes 
positive anomalies, blue shading negative anomalies. Contours are drawn for anomaly 
magnitudes of 1 and 2°C. Shading changes occur at magnitudes of 0.25, 0.5, 1.0, 1.5, and 
2°C. 
 
4. Agreement plot for the observed SST-forced simulations of five AGCMs for surface 
air temperature over land for DJF 2002-03. Grid points where all five AGCMs simulated 
positive (negative) temperature anomaly are shown in yellow (blue).  
 
5. Top: Observed surface temperature anomaly for DJF 2002-03.  Contours are drawn at 
zero, 60 and –60 m; dashed lines denote negative anomalies. Orange (blue) shading 
denotes positive (negative) anomalies. Contours are drawn at each 1°C. Shading changes 
occur at magnitudes of 15, 30, 45, 80 and 120 m. Bottom: Six-way agreement plot, 
including the observations as well as the simulations of five AGCMs whose agreement 
over land was shown in Fig. 4. 
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Figure 1.  Top: Ensemble mean simulation of 200 hPa height for DJF 2001-02 using a 
single AGCM forced by the observed global SST for the 3-month period.   Bottom: 
Observed 200 hPa height anomalies for DJF 2001-02. Contours are drawn at zero, 60 and 
–60 m; dashed lines denote negative anomalies. Orange (blue) shading denotes positive 
(negative) anomalies. Shading changes occur at magnitudes of 15, 30, 45, 80 and 120 m. 
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Figure 2.  Observed 3-month mean SST anomaly for DJF 2002-03. Red shading denotes 
positive anomalies, blue shading negative anomalies. Contours are drawn for anomaly 
magnitudes of 1 and 2°C. Shading changes occur at magnitudes of 0.25, 0.5, 1.0, 1.5, and 
2°C.  
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Figure 3.  Plots of surface temperature anomaly as simulated by five AGCMs for DJF 
2002-03, all forced by prescribed observed SSTs for those three months. Red shading 
denotes positive anomalies, blue shading negative anomalies. Contours are drawn for 
anomaly magnitudes of 1 and 2°C. Shading changes occur at magnitudes of 0.25, 0.5, 
1.0, 1.5, and 2°C. 
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Figure 4.  Agreement plot for the observed SST-forced simulations of five AGCMs for 
surface air temperature over land for DJF 2002-03. Grid points where all five AGCMs 
simulated positive (negative) temperature anomaly are shown in yellow (blue). 
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Figure 5.  Top: Observed surface temperature anomaly for DJF 2002-03. Contours are drawn at 
zero, 60 and –60 m; dashed lines denote negative anomalies. Orange (blue) shading denotes 
positive (negative) anomalies. Contours are drawn at each 1°C. Shading changes occur at 
magnitudes of 0.25, 0.5, 1, 1.5 and 2°C. Bottom: Six-way agreement plot, including the 
observations as well as the simulations of five AGCMs whose agreement over land was shown in 
Fig. 4. 
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